
International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012                                                                                         1 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

Reaching Optimum Designs Through Processes 
Inspired by Principles of Evolution 

Anu Taneja   Amit Kumar        

Abstract-Genetic Algorithms have recently become a popular artificial 

technique for solving complex optimization problems and a sophisticated 

tool for machine learning. This paper provides an introduction to genetic 

algorithms and brief applicability to problems. There is a focus on GAs 

used as an optimisation technique. GAs technique is based on natural 

evolution which provides a robust solution for a given problem. This paper 

explains how GAs approaches to optimization for a problem with 

implementation methods. 

 
Keywords- 

Darwin’s Theory, EA- Evolutionary Algorithms, EP- Evolutionary 
Programming, GA- Genetic Algorithms,  NP- Non Deterministic 
Polynomial, Optimization. 

 

1. INTRODUCTION 
      Nature provides us different things. When we try to think 
about nature, there are complex mechanisms, operations 
involved in it. There are many scientific theories proposed on 
specific part of nature. One among the successful theory is 
DARWIN’S theory of EVOLUTION. The most important is 
that it predicted the need for a biological way for passing 
information between generations. That ultimately led to the 
discovery of the DNA molecule and within half a century the 
mapping of the human genome as well as that of other 
animals. In the other direction the ideas of evolution have 
given computer scientists ideas for new ways to program - 
the notion of genetic algorithms. Computer science is about 
coming up with solutions to problems and that is exactly 
what nature does over time - adapt animal species via natural 
selection to allow them to survive better in their changing 
environments. The idea is that to solve a problem into "digital 
DNA" and evolve a solution. 
     Genetic Algorithms are a way of solving problems by 
mimicking the same processes Mother Nature uses. They use 
same combination of selection, recombination and mutation 
to evolve a solution to a problem. Genetic Algorithms are one 
of the best ways to solve a problem for which little is known. 
A population is created with a group of individuals created 
randomly. The individuals in the population are then 
evaluated. The evaluation function is provided by the 
programmer and gives the individuals a score based on how 
well they perform at the given task. Two individuals are then 
selected based on their fitness value; the higher is the fitness, 
the higher are the chances of Selection. These individuals then 
“reproduce” to create one or more offspring, after which the 
offspring are mutated randomly. This continues until a 
suitable solution has been found or a certain number of 
generations have been passed, depending on the needs of 
programmer. 

 
 

 
 
2. HISTORY 

       It was in the 1950/60s that several independent 
researchers were studying the idea that evolution could be 
used as an optimization tool for engineering problems. The 
idea behind it all was to evolve solutions to problems by 
using natural means based on “survival of the fittest”. 
Evolutionary strategies were introduced in the mid 60s by 
Rechenberg as a method he used to optimize real-valued 
parameters for hardware devices. Owens, Fogel and Walsh 
developed evolutionary programming, a technique used 
where candidate solutions to problems or tasks were 
represented as finite-state machines which were evolved by 
randomly mutating their state-transition diagrams and then 
selecting the fittest. Together with genetic algorithms, these 
three areas form the backbone of evolutionary computation. 
Genetic algorithms were invented by Holland in the 60's and 
developed later in the 70's. This method was defined as a way 
to move from one population of chromosomes to another by 
utilizing natural selection and the operator of crossover, 
mutation, and inversion. Often, the term - genetic algorithm - 
is used to describe something very different from what was 
originally defined. 
 

3. DEFINITION OF GENETIC ALGORITHMS 
    “Genetic Algorithms are nondeterministic stochastic 
search/optimization methods that utilize the theories of 
evolution and natural selection to solve a problem within a 
complex solution space”. Genetic algorithms are basically 
computer-based problem solving systems which use 
computational models of some of the known mechanisms in 
“evolution” as key elements in their design and 
implementation. They are a member of a wider population of 
algorithm Evolutionary Algorithms (EA). The major classes of 
EAs are: GENETIC Algorithms, EVOLUTIONARY 
PROGRAMMING, EVOLUTION Strategies, CLASSIFIER 
SYSTEM, and GENETIC PROGRAMMING. They all share a 
common conceptual base of simulating the evolution of 
individual structures through methods of selection, mutation, 
and reproduction. The methodologies depend on the 
performance of the individual structures as defined by an 
environment. Genetic Algorithms are heuristic, which means 
it estimates a solution. We won't know if we get the exact 
solution, but that may be a minor concern. In fact, most real-
life problems are like that: we estimate a solution rather than 



International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012                                                                                         2 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

calculating it exactly. GA’s work within a Complex solution 
space: GAs can be used where optimization is needed. I mean 
that where there are complex large solutions to the problem 
but we have to find the best one. Like we can use GAs in 
findings best moves in chess, mathematical problems, and 
financial problems and in many more areas. 

4. NEED FOR GENETIC ALGORITHM 
There are many tasks for which we know fast 

(polynomial) algorithms. There are also some problems that 
are not possible to be solved algorithmically. For some 
problems was proved that they are not solvable in 
polynomial time. But there are many important tasks, for 
which it is very difficult to find a solution, but once we have 
it, it is easy to check the solution. This fact led to NP-complete 
problems. NP stands for nondeterministic polynomial and it 
means that it is possible to "guess" the solution (by some 
nondeterministic algorithm) and then check it, both in 
polynomial time. If we had a machine that can guess, we 
would be able to find a solution in some reasonable time. 
Studying of NP-complete problems is for simplicity restricted 
to the problems, where the answer may be yes or no. Because 
there are tasks with complicated outputs, a class of problems 
called NP-hard problems has been introduced. This class is 
not as limited as class of NP-complete problems. For NP-
problems is characteristic that some simple algorithm to find 
a solution is obvious at a first sight - just trying all possible 
solutions. But this algorithm is very slow (usually O (2^n)) 
and even for a bit bigger instances of the problems it is not 
usable at all. Today nobody knows if some faster exact 
algorithm exists. Proving or disproving these remains as a big 
task for new researchers. Today many people think, that such 
an algorithm does not exist and so they are looking for some 
alternative methods - example of these methods are 
“GENETIC ALGORITHMS”.  

 

5. IMPORTANCE OF GA OVER OTHER 

TECHNIQUES 
For most problems in real life don't have any formula for 

solving the problem because it is too complex, or if you do, it 
just takes too long to calculate the solution exactly. An 
example could be space optimization - it is very difficult to 
find the best way to put objects of varying size into a room so 
they take as little space as possible. The most feasible 
approach then is to use a heuristic method. Genetic 
algorithms are different from other heuristic methods in 
several ways. The most important difference is that a GA 
works on a population of possible solutions, while other 
heuristic methods use a single solution in their iterations. 
Another difference is that GAs are probabilistic (stochastic), 
not deterministic. 

 

6. WORKING OF GA 
Before understanding the working of GA, let’s 

understand some biological terms related to this. 
 

Chromosome: A set of genes. Chromosome contains the 
solution in form of genes. 
Gene: A part of chromosome. A gene contains a part of 
solution. It determines the solution. E.g.16743 is a 
chromosome and 1,6,7,4 and 3 are its genes. 
Individual: Same as chromosome. 
Population: No of individuals present with same length of 
chromosome. 
Fitness: Fitness is the value assigned to an individual. It is 
based on how far or close a individual is from the solution. 
Greater the fitness value better the solution it contains. 
Fitness function: Fitness function is a function which assigns 
fitness value to the individual. It is problem specific. 
Breeding: Taking two fit individuals and intermingling the 
chromosome to create new two individuals. 
Mutation: Changing a random gene in an individual. 
Selection: Selecting individuals for creating the next 
generation. 
 

6.1 BASIC DESCRIPTION 
Genetic algorithm applies the rules of evolution to the 

individuals. Each individual in the GA population represents 
a possible solution to the problem. It selects the fit individuals 
according to fitness function then combines these individuals 
into new individuals. Using this method repeatedly, the 
population will hopefully evolve good solutions. 
Specifically, the elements of a GA are:  
1. Selection (according to some measure of fitness), 
2. Cross-Over (a method of reproduction, "mating" the 
individuals into new individuals), and 
3. Mutation (adding a bit of random noise to the off-spring, 
changing their "genes"). 
As we can see here, Darwin's principles have been a major 
inspiration to GAs. It can be performed through following 
cycle of stages. 
i)  Creation of a "population" of strings 
ii)  Evaluation of each string 
iii) Selection of best strings and 
iv) Genetic manipulation to create new population of strings. 
This flowchart illustrates the basic steps in a GA: 

 

 

 

 

 

 

 

 

Yes 
No 

Initialize 

Population 

Calculate 

Fitness 

Stop 

Iterations 

Population 

Offspring Genetic 

Operations 

Solution 

Found? 

Transfer 



International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012                                                                                         3 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

 
 

Fig.1 Flowchart of Genetic Algorithms 

6.2 GENERAL ALGORITHM OF GA 

The algorithm is almost same in most of the applications 
only fitness functions are different to different problems. The 
general algorithm is as follows: 
START 
Generate initial population. 
Assign fitness function to all individuals.[Fitness] 
DO UNTIL best solution is found 
Select individuals from current generation [Elitism] 
Create new offspring with mutation and/or breeding [New 
Population] 
Compute new fitness for all individuals 
Kill all the unfit individuals to give space to new off springs 
[Replace] 
Check if best solution is found 
LOOP 
END 

7. IMPLEMENTATION 

Now let’s concentrate on how all the steps are done: 
Each cycle in Genetic Algorithms produces a new generation 
of possible solutions for a given problem. In the first phase, 
an initial population, describing representatives of the 
potential solution, is created to initiate the process. 
1. The elements of the population are encoded into bit-strings, 
called chromosomes. Although encoding of chromosomes is 
done by many ways, binary encoding is most used. In binary 
encoding every chromosome is a string of bits, 0 or 1. 
Chromosome A 101100101100101011100101 
Chromosome B 111111100000110000011111 
 
2. The performance of the strings, often called fitness, is then 
evaluated with the help of some functions, representing the 
constraints of the problem. A fitness function is a particular 
type of objective function that prescribes the optimality of a 
solution (that is, a chromosome) in a genetic algorithm so that 
that particular chromosome may be ranked against all the 
other chromosomes. Depending on the fitness of the 
chromosomes, they are selected for a subsequent genetic 
manipulation process. 
 
3. Selection process is mainly responsible for assuring 
survival of the best-fit individuals. Here individual genomes 
are chosen from a population for later breeding 
(recombination or crossover). 
A generic selection procedure may be implemented as 
follows: 
 The fitness function is evaluated for each individual, 
providing fitness values, which are then normalized. 
Normalization means dividing the fitness value of each 

individual by the sum of all fitness values, so that the sum of 
all resulting fitness values equals 1.This can be done and 
represented through “Roulette wheel selection method”. 
Roulette wheel selection method: It is the likelihood of 
picking an individual. In this individuals are given a 
probability of being selected that is directly proportional to 
their fitness. Two individuals are then chosen randomly 
based on these probabilities and produce offspring. 
Imagine a roulette wheel where all chromosomes are placed 
in the population, every chromosome has its place big 
accordingly to its fitness function, it looks like on the 
following figure. 

.  
 

Fig.2 Roulette Wheel Selection Method 
 

The population is sorted by descending fitness values. 
• Accumulated normalized fitness values are computed (the 
accumulated fitness value of an individual is the sum of its 
own fitness value plus the fitness values of all the previous 
individuals). The accumulated fitness of the last individual 
should of course be 1 (otherwise something went wrong in 
the normalization step!). 
•   A random number R between 0 and 1 is chosen. 
• The selected individual is the first one whose accumulated 
normalized value is greater than R .This step is repeated until 
chromosome is found. The selected chromosomes 
(individuals) are called parents. 
 
4. After selection of the population strings is over, the genetic 
manipulation process consisting of two steps is carried out. In 
the first step, the crossover operation that recombines the bits 
(genes) of each two selected strings (chromosomes) is 
executed. The second step in the genetic manipulation 
process is termed mutation, where the bits at one or more 
randomly selected positions of the chromosomes are altered. 
 

7.1 CROSS-OVER 

 
The cross-over is the method for combining those 

selected individuals into new individuals. Remember that the 
individuals are simply strings of values. The crossover splits 
up the "parent" individuals and recombines them. Here's an 
example of how two "parents" cross over to make two 
"children". The simplest way how to do this is to choose 



International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012                                                                                         4 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

randomly some crossover point and everything before this 
point copy from a first parent and then everything after a 
crossover point copy from the second parent. 
 
Chromosome1 11011 | 00100110110 11011 | 11000011110 
child1 
 
Chromosome2 11011 | 11000011110 11011 | 00100110110 
child2 
. 
It is illustrated in figure below: 
 

Off springs:  
 
 
 

Fig.3 Cross Over 
 

7.2 MUTATION 
 

    Mutation is used to maintain genetic diversity from one 
generation of a population of chromosomes to the next. It is 
analogous to biological mutation. The classic example of a 
mutation operator involves a probability that an arbitrary bit 
in a genetic sequence will be changed from its original state. 
A common method of implementing the mutation operator 
involves generating a random variable for each bit in a 
sequence. This random variable tells whether or not a 
particular bit will be modified. The purpose of mutation in 
GAs is preserving and introducing diversity. Mutation 
should allow the algorithm to avoid local minima by 
preventing the population of chromosomes from becoming 
too similar to each other, thus slowing or even stopping 
evolution. This reasoning also explains the fact that most GA 
systems avoid only taking the fitness of the population in 
generating the next but rather a random (or semi-random) 
selection with a weighting toward those that are fitter. 
Mutation is illustrated in below figure. 
 
                      
 
 
 
 
 
 

Fig.4 Mutation: Alteration of 5th bit 
 

The off springs produced by the genetic manipulation process 

are the next population to be evaluated. 

8. EXAMPLE: CPU SCHEDULING BY 

GENETIC ALGORITHMS 

Scheduling in the operating system is a critical factor in 
the overall system efficiency. Process scheduling in an 
operating system can be stated as allocating processes to the 
processor so that throughput & efficiency of the system will 
be maximize and waiting time will be minimized. Typically 
scheduling problems are NP Complete problems i.e. 
algorithms that implement scheduling require exponential 
time to reach a solution. A genetic algorithm has the 
capability to find out the optimal job sequence which is to be 
allocated to the CPU. The algorithm starts with a population 
which is consists of several solution to the optimization 
problem. A member of population is called an individual. A 
fitness value is associated with each individual. Each solution 
in the population or an individual is encoded as a string of 
symbols. These symbols are known as genes & the solution 
string is called a chromosome. The values taken by genes are 
called alleles. Several pair of individual (parents) in the 
population mate to produce offspring by applying the genetic 
operator crossover. Selection of parents is done by repeated 
use of a choice function. A number of individuals & off 
springs are passed to a new generation such that the number 
of individual in the new population is the same as old 
population. A selection function determines which string 
forms the population in the next generation. Each serving 
string undergoes inversion with a specified probability. 
Fitness function is Wi i.e. the waiting time of process where N 
is the total no. of processes. 
Termination Criterion is that the genetic process will end if 
there is no change to the population’s best fitness for a 
specified number of generations 
Experimental Description 
There are 6 jobs, which are to be considered. The number of 
possible sequences is 6! The total 10 sequences are selected 
out of 720 for the 6 jobs. Considering the number of jobs as 6 
and the crossover point is 2 and 4. Let us consider following 
two individuals, which are marked as fit to generate next 
generation. 3 1 2 4 5 6 and 6 4 3 5 1 2 
After cross over Child 1: 3 4 1 2 5 6 
                            Child 2: 6 3 4 5 1 2 
And let the inversion point be 2 and 5 
After inversion Child 1: 3 5 1 2 4 6 
                           Child 2: 6 1 4 5 3 2 
After that we calculate the fitness of parent1, parent2, child1, 
child2 and two fittest individual are returned to the solution 
space. And above step is repeated until convergence criteria 
meet. 
This example is an excellent illustration of how GA achieves 
the optimization. 

9.  ADVANTAGES AND 

DISADVANTAGES OF GAS 

GA has number of advantages, some important among 
them are: 

 
 

 

1 0 1 1 1 1 0 1 0 1 1 1 

1 0 1 1 0 1 0 1 0 1 1 1 

 
 

Parents 



International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012                                                                                         5 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org  

• Parallelism. GA works with multiple offspring’s thus 
making it ideal for large problems where evaluation of all 
possible solutions in serial would be too time taking, if not 
impossible.. 
• Inductive. It can quickly scan a vast solution set. The 
inductive nature of the GA means that it doesn't have to 
know any rules of the problem - it works by its own internal 
rules. This is very useful for complex or loosely defined 
problems. 
• Easy to implement. They are also easy to implement. Once 
you have some GA, you just have to write new chromosome 
(just one object) to solve another problem. With the same 
encoding you just change the fitness function and it is all. On 
the other hand, choosing encoding and fitness function can be 
difficult. 
 
Disadvantages 
 
• Certain optimization problems (they are called variant 
problems) cannot be solved by means of genetic algorithms. 
This occurs due to poorly known fitness functions which 
generate bad chromosome blocks in spite of the fact that only 
good chromosome blocks cross-over. 
• There is no absolute assurance that a genetic algorithm will 
find a global optimum. It happens very often when the 
populations have a lot of subjects. 
• Like other artificial intelligence techniques, the genetic 
algorithm cannot assure constant optimization response 
times. Even more, the difference between the shortest and the 
longest optimization response time is much larger than with 
conventional gradient methods. This unfortunate genetic 
algorithm property limits the genetic algorithms use in real 
time applications. 

10. CONCLUSION AND FUTURE WORK 

Genetic Algorithms are mainly inspired by DARWIN’s 
theory of evolution. The whole concept is derived from single 
sentence “survival of the fittest”. Nature itself provides best 
robust solutions to complex problems that we see day today 
in our life. If we understand those solutions and implement in 
complex problems, there might be no solution better than 
that. Genetic algorithms explore a far greater range of 
solutions to a problem than do conventional programs 
techniques like greedy techniques etc. They can be used when 
there is no other known efficient problem solving strategy, 
and the problem domain is NP-complete. These algorithms 
are extremely efficient, and are used in fields as stock 
exchange, production scheduling or programming of 
assembly robots in the automotive industry. 
Finally, using Genetic Algorithms, there would be a no 
problem that remains unsolved even considering 
performance criteria. 

The results provide an optimal solution for 
scheduling problems and this work can help us to design the 
effective algorithm for dynamic process scheduling in future. 

 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 [1] “Introduction to Genetic Algorithms” by S.N. 
Sivanandam and S.N. Deepa. 
 [2] More Efficient Genetic Algorithm For Solving 
Optimization Problems-S. Ghoshray, K. K. Yen, 
Department of Electrical and Computer Engineering, 
Florida International University 
[3] Tutorial GAs - A.A.R. Townsend. 
[4]http://en.wikibooks.org/wiki/The_Computer_Revol
ution/Artificial Intelligence /Genetic Algorithms. 

         [5]  David E.Goldberg, Genetic Algorithms in Search 
Optimization &                    Machine Learning, Second 
Reprint, Pearson Education Asia pte.Ltd, 2000. 

         [6] Genetic Algorithm approach to Operating System 
process scheduling Problem Dr.Rakesh Kumar, Reader 
Department of Computer Science and Application, 
Kurkshetra University, Haryana, India. 
[7] K. R. Baker. Introduction to Sequencing and 
Scheduling. John Wiley and Sons, Inc., New York, 1974. 
 [8]   William Stallings Operating Systems ISBN 0-13-
031999-6 
[9] Z.Michalewicz, “Genetic Algorithms + Data 
Structures =Evolutionary Programs“, Springer- Verlag, 
Berlin, 1992. 

http://en.wikibooks.org/wiki/The_Computer_Revolution/Artificial
http://en.wikibooks.org/wiki/The_Computer_Revolution/Artificial
http://en.wikibooks.org/wiki/The_Computer_Revolution/Artificial

